X^2+6x-18=6x+4

Simple and best practice solution for X^2+6x-18=6x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+6x-18=6x+4 equation:



X^2+6X-18=6X+4
We move all terms to the left:
X^2+6X-18-(6X+4)=0
We get rid of parentheses
X^2+6X-6X-4-18=0
We add all the numbers together, and all the variables
X^2-22=0
a = 1; b = 0; c = -22;
Δ = b2-4ac
Δ = 02-4·1·(-22)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{22}}{2*1}=\frac{0-2\sqrt{22}}{2} =-\frac{2\sqrt{22}}{2} =-\sqrt{22} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{22}}{2*1}=\frac{0+2\sqrt{22}}{2} =\frac{2\sqrt{22}}{2} =\sqrt{22} $

See similar equations:

| (5+3)j=24 | | (z+8)^2=3 | | 1/3(t+7)=31 | | 6x+13-8x=15-19x+17x-2 | | 6x−18=(14x+38) | | 12/5=x/6 | | 4(2x+8)=2)5x+10 | | F(x)=3x3+1/4x-7 | | 3n=-7.2 | | (16X)^2+(9x)^2=47^2 | | 27=9+2a | | 9h+1=80 | | 2x+5=4(x+2)- | | 2(3x-5)+4=31 | | 12y+1=7 | | 0=x+-1.4 | | 0=35x^2+31x-40 | | 12+9/x=15 | | 6(10+z+3=) | | 12h−3h−6=3 | | 14+4x=7x+2 | | 3(9+4x−5)= | | (3v+8)÷(v+5)=0 | | 8w-9=3w+26 | | 3/4x-4(2-3/2x)=1/3 | | 390=g+34 | | 0-5x=16 | | 31/7d=88 | | 9n-15=5 | | 4^-5x=7^-x+6 | | 40-8xx=2 | | 10x+4÷7=8 |

Equations solver categories